Evaluation of dairy food processing wash water solids as a protein source: II. Microbial protein synthesis, duodenal nitrogen flow, and small intestinal amino acid disappearance.

نویسندگان

  • J S Caton
  • J E Williams
  • T May
  • R L Belyea
  • E E Beaver
  • M E Tumbleson
چکیده

Twelve ruminally, duodenally, and ileally-cannulated Hereford heifers (average initial BW 313 +/- 20 kg) were used in a replicated experiment to evaluate dairy food processing wash water solids (WWS) as a protein source. Heifers were fed 2.8 kg of chopped (7.6 cm) hay and one of three supplements (1.5 kg/d, DM basis). Supplements were formulated to be similar in energy and contained 1.0 (control), 23.2 (WWS), and 21.6% (soybean meal; SBM) CP on an OM basis. Total N and nonammonia N entering the duodenum (g/d) were greater (P less than .10) for heifers fed WWS and SBM supplements than for controls. Bacterial N flow (g/d) at the duodenum was less (P less than .10) for controls (43.9) than for WWS- (63.9) and SBM- (69.9) supplemented heifers. Feed escape N (g/d) was greater (P less than .10) for WWS-fed heifers than for those fed SBM (32.1 vs 20.7 g/d, respectively). Total tract N digestion (g/d) was greatest (P less than .10) for SBM, intermediate for WWS, and least for control heifers. Microbial protein synthesis (g/kg of OM intake) was enhanced (P less than .10) by WWS and SBM supplementation, but efficiency of synthesis (g/kg of OM fermented) did not differ among treatments. Essential amino acid (AA) disappearance in the small intestine (g/d) was less (P less than .10) for control than for the other two treatments. Nonessential AA disappearance was greatest (P less than .10) for the WWS and least (P less than .10) for the control treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of dairy food processing wash water solids as a protein source: III. Nitrogen utilization by heifers fed medium-concentrate diets.

Eight multicannulated heifers (average BW 415 +/- 34 kg) were used in a replicated 4 x 4 Latin square to evaluate fluid milk processing wash water solids (WWS) as a dietary N source. Heifers were fed corn/cottonseed hull-based diets containing soybean meal (control, 0% WWS N) or WWS replacing soybean meal at 33, 67, or 100% of supplemental dietary N. Total tract and ruminal DM and OM digestibil...

متن کامل

Effects of Thyme Essential Oil and Disodium Fumarate on Ruminal Fermentation Characteristics, Microbial Population and Nutrient Flow in a Dual Flow Continuous Culture System

The aim of the present study was to investigate the effects of di-sodium fumarate (DSF) and thyme essential oil (TEO) solely and simultaneously on ruminal fermentation properties and microbial abundance. A dual-flow continuous culture system (DFCC) with eight 1400-mL fermenters was used in a period of 12 d that divided to 9 d for adaptation and 3 d for sampling. Fermenters were fed 100 g d...

متن کامل

Supplemental protein sources for steers fed corn-based diets: I. Ruminal characteristics and intestinal amino acid flows.

Five cannulated Holstein steers (302 +/- 23 kg) were used in a 4 x 4 Latin square design experiment with extra observations to evaluate the effect of supplemental protein source on postruminal flow and intestinal disappearance of N and amino acids (AA). Diets were formulated to contain 12.5% CP using cracked corn (70%), ground corn cobs (15%), and supplement (15%). Except for an all-urea supple...

متن کامل

Ruminal Protein Degradation and Estimation of Rumen Microbial Protein Production

Animal agricultural production systems are major sources of nonpoint pollution affecting quality of water sources. Nitrogen has been identified as the foremost source of nonpoint water pollution  and the potential negative impacts of N have become an area of public concern. protein degradation from feed ingredients is an important factorinfluencing AA supply to the duodenum. Ruminal proteolysis...

متن کامل

Ruminal Protein Degradation and Estimation of Rumen Microbial Protein Production

Animal agricultural production systems are major sources of nonpoint pollution affecting quality of water sources. Nitrogen has been identified as the foremost source of nonpoint water pollution  and the potential negative impacts of N have become an area of public concern. protein degradation from feed ingredients is an important factorinfluencing AA supply to the duodenum. Ruminal proteolysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of animal science

دوره 69 8  شماره 

صفحات  -

تاریخ انتشار 1991